
Analyzing the Evolution of
Data-Intensive Software Systems

in support to software maintenance

Anthony Cleve
PReCISE Research Center

University of Namur, Belgium

Analyzing the Evolution of Data-Intensive Software Systems 2

Credits
This talk is based on joint work with …
i.e., I shamelessly reused some slides by…

Analyzing the Evolution of Data-Intensive Software Systems 3

Credits
This talk is based on joint work with …
i.e., I shamelessly reused some slides by…

At University of Namur
Maxime Gobert (MSc. student)
Jérôme Maes (Msc student)
Nesrine Noughi (PhD student)
Loup Meurice (PhD student)

Analyzing the Evolution of Data-Intensive Software Systems 4

Credits
This talk is based on joint work with …
i.e., I shamelessly reused some slides by…

At University of Namur
Maxime Gobert (MSc. student)
Jérôme Maes (Msc student)
Nesrine Noughi (PhD student)
Loup Meurice (PhD student)

At University of Szeged, Hungary
Dr. Csaba Nagy (visiting Post-doc)

Analyzing the Evolution of Data-Intensive Software Systems 5

Credits
This talk is based on joint work with …
i.e., I shamelessly reused some slides by…

At University of Namur
Maxime Gobert (MSc. student)
Jérôme Maes (Msc student)
Nesrine Noughi (PhD student)
Loup Meurice (PhD student)

At University of Szeged, Hungary
Dr. Csaba Nagy (visiting Post-doc)

At University of Victoria, Canada
Prof. Dr. Jens Weber (collaborator)

Analyzing the Evolution of Data-Intensive Software Systems 6

Credits
This talk is based on joint work with …
i.e., I shamelessly reused some slides by…

At University of Namur
Maxime Gobert (MSc. student)
Jérôme Maes (Msc student)
Nesrine Noughi (PhD student)
Loup Meurice (PhD student)

At University of Szeged, Hungary
Dr. Csaba Nagy (visiting Post-doc)

At University of Victoria, Canada
Prof. Dr. Jens Weber (collaborator)

At University of Murcia, Spain
Fco Javier Bermudez (visiting PhD student)

Analyzing the Evolution of Data-Intensive Software Systems

Introduction

Our research field

Analyzing the Evolution of Data-Intensive Software Systems

Once upon a time… (in 2009)

Proposed solutions

General problem

Analyzing the Evolution of Data-Intensive Software Systems

Problem statement

System = software systems
•  play a major role for most organizations

•  often large, heterogeneous and complex

•  made of various inter-dependent artefacts
System

Analyzing the Evolution of Data-Intensive Software Systems

Problem statement

System Evolution

System evolution = inevitable phenomenon
•  Software systems are constantly evolving

•  business pull

•  IT push

•  error correction (repair)

•  complex, expensive and highly risky process

•  consistency between artefacts to be preserved

Analyzing the Evolution of Data-Intensive Software Systems

Why is software evolution so important?

System maintenance and evolution
responsible for up to 90% of total system costs !

Analyzing the Evolution of Data-Intensive Software Systems

Why is software evolution so important?

System maintenance and evolution
from 2x to 100x more costly than initial system development

Analyzing the Evolution of Data-Intensive Software Systems

Why is software evolution so important?

System maintenance and evolution
up to 80% of the maintenance time spent in trying to understand
… the current version of the system

Analyzing the Evolution of Data-Intensive Software Systems

Work distribution of system developers

Years New
projects

Enhancements Repairs Total

1950 90 3 7 100

1960 8 500 500 1000 10 000

1970 65 000 15 000 20 000 100 000

1980 1 200 000 600 000 200 000 2 000 000

1990 3 000 000 3 000 000 1 000 000 7 000 000

2000 4 000 000 4 500 000 1 500 000 10 000 000

2010 5 000 000 7 000 000 2 000 000 14 000 000

2020 7 000 000 11 000 000 3 000 000 21 000 000

Today: 65% of all developers work on system maintenance and evolution

In 2020: only 30 % of them will work on new projects !

Source: Capers Jones, Software Productivity Research
(via Paul Klint. The Software Evolution Volcano, 2011.)

Analyzing the Evolution of Data-Intensive Software Systems

Focus on data-intensive systems

database

programs

Data-intensive system

schema

Data-Intensive System

Data-intensive = intensive use of data
•  a database containing mission-critical data

•  a set of programs read and update this database

•  queries expressed on top of the database schema

Analyzing the Evolution of Data-Intensive Software Systems

Data-intensive system evolution

intersection (or union) of two distinct research communities

Software
engineering

Database
 engineering

You are here

Analyzing the Evolution of Data-Intensive Software Systems

Database engineering (ideal view)

Coding DDL code

Physical
design

Logical
design

Conceptual
analysis

User
requirements

Conceptual
schema

Logical schema

Physical schema

Analyzing the Evolution of Data-Intensive Software Systems

Database engineering (ideal view)

Logical schema

PRODUCT
reference
price
id: reference

ORDERS
num
date
cuscode
id: num
ref: cuscode

DETAIL
prodref
ordnum
quantity
id: prodref

ordnum
ref: ordnum
ref: prodref

CUSTOMER
code
name
address
phone
id: code

Conceptual schema
Conceptual schema

1-1 0-N places 0-N 0-N detail
quantity

PRODUCT
reference
price
id: reference

ORDER
num
date
id: num

CUSTOMER
code
name
address
phone
id: code

PRODUCT
reference
price
id: reference

acc

ORDERS
num
date
cuscode
id: num

acc
ref: cuscode

acc

DETAIL
prodref
ordnum
quantity
id: prodref

ordnum
acc

ref: ordnum
acc

ref: prodref

CUSTOMER
code
name
address
phone
id: code

acc

Physical schema

Analyzing the Evolution of Data-Intensive Software Systems

Database engineering (ideal view)
create table CUSTOMER (
 code char(6) not null,

 name char(20) not null,

 address char(40) not null,

 phone numeric(12) not null,

 constraint ID_CUSTOMER primary key (code));

create table DETAIL (

 prodref char(6) not null,

 ordnum char(6) not null,

 quantity numeric(6) not null,

 constraint ID_DETAIL primary key (prodref, ordnum));

create table ORDERS (

 num char(6) not null,

 date date not null,

 cuscode char(6) not null,

 constraint ID_ORDERS primary key (num));

create table PRODUCT (

 reference char(6) not null,

 price numeric(6,2) not null,

 constraint ID_PRODUCT primary key (reference));

alter table DETAIL add constraint REF_DET_ORD_FK

 foreign key (ordnum) references ORDERS;

alter table DETAIL add constraint REF_DET_PRO

 foreign key (prodref) references PRODUCT;

alter table ORDERS add constraint REF_ORD_CUS_FK

 foreign key (cuscode) references CUSTOMER;

create unique index CUSTOMER_IND on CUSTOMER (code);

create unique index DET_IND on DETAIL (prodref, ordnum);

create index DET_ORD_IND on DETAIL (ordnum);

create unique index ORD_IND on ORDERS (num);

create index ORD_CUS_IND on ORDERS (cuscode);

create unique index PRODUCT_IND on PRODUCT (reference);

DDL code

Analyzing the Evolution of Data-Intensive Software Systems

Should form a complete and up-to-date
documentation of the database

Database engineering (ideal view)

Coding DDL code

Physical
design

Logical
design

Conceptual
analysis

User
requirements

Conceptual
schema

Logical schema

Physical schema

Should form a complete and up-to-date
documentation of the database

Analyzing the Evolution of Data-Intensive Software Systems

Database engineering (in practice)

Coding DDL code

Physical
design

Logical
design

Conceptual
analysis

User
requirements

Conceptual
schema

Logical schema

Physical schema

User
requirements

The DDL code usually constitutes the only available
up-to-date documentation of the database !

Analyzing the Evolution of Data-Intensive Software Systems

How about the programs?

Program source
code Coding

Design

Analysis User
requirements

Design
models

Requirements
models

Analyzing the Evolution of Data-Intensive Software Systems

How about the programs ?

Coding Program source
code

User
requirements

The source code often constitutes the only available
up-to-date documentation of the programs !

Analyzing the Evolution of Data-Intensive Software Systems

schema

programs

database

Data-intensive system (v1)

schema*

programs*

database*

Data-intensive system (v2)

system

evolution

Data-intensive systems evolution

Analyzing the Evolution of Data-Intensive Software Systems

Data-intensive systems evolution

schema

programs

database

Data-intensive system (v1)

Analyzing the Evolution of Data-Intensive Software Systems

Data-intensive systems evolution

schema

programs

database

Data-intensive system (v1)

PHASE 1: Understand the current version of the system

= reverse-engineering process

1.  Redocument the database schema (structure and constraints)

2.  Redocument the programs (structure and behavior)

Analyzing the Evolution of Data-Intensive Software Systems

PHASE 2: Evolve the system towards a new version

= co-evolution process

1.  Change the database schema

2.  Adapt the database contents

3.  Adapt the programs

schema

programs

database

Data-intensive system (v1)

schema*

programs*

database*

Data-intensive system (v2)

schema
change

data
adaptation

program
adaptation

Data-intensive systems evolution

Analyzing the Evolution of Data-Intensive Software Systems

When size does matter

PRODUCT
reference
price
id: reference

acc

ORDERS
num
date
cuscode
id: num

acc
ref: cuscode

acc

DETAIL
prodref
ordnum
quantity
id: prodref

ordnum
acc

ref: ordnum
acc

ref: prodref

CUSTOMER
code
name
address
phone
id: code

acc

DB schema used as illustration in my 1st database course

4 tables

< 40 lines of DDL code

Analyzing the Evolution of Data-Intensive Software Systems

When size does matter

DB schema of OSCAR, an healthcare system used in Canada

480 tables

18.560 lines of DDL code

Analyzing the Evolution of Data-Intensive Software Systems

When size does matter

SQL query used as illustration in my 1st database course

select NCLI, NAME
from CUSTOMER
where CITY = ‘Namur’

Analyzing the Evolution of Data-Intensive Software Systems

When size does matter
SQL query used in OSCAR, an healthcare system used in Canada

 select appointmen0_.appointment_no as appointm1_89_0_, demographi1_.demographic_no as demograp1_27_1_,
appointmen0_.appointment_date as appointm2_89_0_, appointmen0_.billing as billing89_0_, appointmen0_.bookingSource as
bookingS4_89_0_, appointmen0_.createdatetime as createda5_89_0_, appointmen0_.creator as creator89_0_,
appointmen0_.creatorSecurityId as creatorS7_89_0_, appointmen0_.demographic_no as demograp8_89_0_, appointmen0_.end_time as
end9_89_0_, appointmen0_.imported_status as imported10_89_0_, appointmen0_.lastupdateuser as lastupd11_89_0_,
appointmen0_.location as location89_0_, appointmen0_.name as name89_0_, appointmen0_.notes as notes89_0_,
appointmen0_.program_id as program15_89_0_, appointmen0_.provider_no as provider16_89_0_, appointmen0_.reason as reason89_0_,
appointmen0_.reasonCode as reasonCode89_0_, appointmen0_.remarks as remarks89_0_, appointmen0_.resources as resources89_0_,
appointmen0_.start_time as start21_89_0_, appointmen0_.status as status89_0_, appointmen0_.style as style89_0_, appointmen0_.type as
type89_0_, appointmen0_.updatedatetime as updated25_89_0_, appointmen0_.urgency as urgency89_0_, demographi1_.title as
title27_1_, demographi1_.first_name as first3_27_1_, demographi1_.last_name as last4_27_1_, demographi1_.sex as sex27_1_,
demographi1_.month_of_birth as month6_27_1_, demographi1_.date_of_birth as date7_27_1_, demographi1_.year_of_birth as
year8_27_1_, demographi1_.address as address27_1_, demographi1_.city as city27_1_, demographi1_.province as province27_1_,
demographi1_.postal as postal27_1_, demographi1_.email as email27_1_, demographi1_.phone as phone27_1_, demographi1_.phone2
as phone15_27_1_, demographi1_.myOscarUserName as myOscar16_27_1_, demographi1_.hin as hin27_1_, demographi1_.ver as
ver27_1_, demographi1_.hc_type as hc19_27_1_, demographi1_.hc_renew_date as hc20_27_1_, demographi1_.roster_status as
roster21_27_1_, demographi1_.patient_status as patient22_27_1_, demographi1_.patient_status_date as patient23_27_1_,
demographi1_.date_joined as date24_27_1_, demographi1_.chart_no as chart25_27_1_, demographi1_.provider_no as provider26_27_1_,
demographi1_.end_date as end27_27_1_, demographi1_.eff_date as eff28_27_1_, demographi1_.roster_date as roster29_27_1_,
demographi1_.roster_termination_date as roster30_27_1_, demographi1_.roster_termination_reason as roster31_27_1_,
demographi1_.pcn_indicator as pcn32_27_1_, demographi1_.family_doctor as family33_27_1_, demographi1_.alias as alias27_1_,
demographi1_.previousAddress as previou35_27_1_, demographi1_.children as children27_1_, demographi1_.sourceOfIncome as
sourceO37_27_1_, demographi1_.citizenship as citizen38_27_1_, demographi1_.sin as sin27_1_, demographi1_.anonymous as
anonymous27_1_, demographi1_.spoken_lang as spoken41_27_1_, demographi1_.official_lang as official42_27_1_,
demographi1_.lastUpdateUser as lastUpd43_27_1_, demographi1_.lastUpdateDate as lastUpd44_27_1_, demographi1_.newsletter as
newsletter27_1_, demographi1_.country_of_origin as country46_27_1_, (select lst.description from lst_gender lst where
lst.code=demographi1_.sex) as formula21_1_, (select d.merged_to from demographic_merged d where d.deleted = 0 and
d.demographic_no = demographi1_.demographic_no) as formula22_1_, (select count(*) from admission a where
a.client_id=demographi1_.demographic_no and a.admission_status='current' and a.program_id in (select p.id from program p where
p.type='Bed')) as formula23_1_, (select count(*) from health_safety h where h.demographic_no=demographi1_.demographic_no) as
formula24_1_ from appointment appointmen0_, demographic demographi1_ where
appointmen0_.demographic_no=demographi1_.demographic_no and demographi1_.hin<>'' and
appointmen0_.appointment_date>='2014-10-23' and appointmen0_.appointment_date<='2014-10-23' and
(upper(demographi1_.province)='ONTARIO' or demographi1_.province='ON') group by demographi1_.demographic_no order by
demographi1_.last_name;

Analyzing the Evolution of Data-Intensive Software Systems

Episod I

The Origins

Analyzing the Evolution of Data-Intensive Software Systems

Episod I – The Origins

 Once upon a time (in 2012-2013)…

•  The OSCAR system
written in Java
> 2 millions lines of code
MySQL database

Analyzing the Evolution of Data-Intensive Software Systems

Episod I – The Origins

 Once upon a time (in 2012-2013)…

•  The OSCAR system
written in Java
> 2 millions lines of code
MySQL database

•  Evolution goal
data migration towards NoSQL

Analyzing the Evolution of Data-Intensive Software Systems

Episod I – The Origins

 Once upon a time (in 2012-2013)…

•  The OSCAR system
written in Java
> 2 millions lines of code
MySQL database

•  Evolution goal
data migration towards NoSQL

•  Problem
lack of documentation (unsurprisingly)

Analyzing the Evolution of Data-Intensive Software Systems

Episod I – The Origins

 Once upon a time (in 2012-2013)…

•  The OSCAR system
written in Java
> 2 millions lines of code
MySQL database

•  Evolution goal
data migration towards NoSQL

•  Problem
lack of documentation (unsurprisingly)

	
Database reverse engineering (DBRE)
via a Master’s thesis project

	

Analyzing the Evolution of Data-Intensive Software Systems

Standard approach to DBRE

DDL	code	 Physical	schema	

Step	I:	physical	extrac1on	

Analyzing the Evolution of Data-Intensive Software Systems

Standard approach to DBRE

Physical	schema	

Step	II:	logical	refinement	

Logical	schema	

Analyzing the Evolution of Data-Intensive Software Systems

Standard approach to DBRE

Logical	schema	

Step	III:	conceptualiza1on	

Conceptual	schema	

Analyzing the Evolution of Data-Intensive Software Systems

When applied to OSCAR...

18 560 lines of DDL code
480 tables
No explicitly declared foreign key !

Physical	schema	

Analyzing the Evolution of Data-Intensive Software Systems

Crazy idea...

•  History analysis techniques have been successfully used to
support program analysis, understanding and evolution

•  Analyzing the system history may provide additional insights

about the current system version, and inform future evolutions

•  So, let’s follow the very same approach for databases !

Analyzing the Evolution of Data-Intensive Software Systems

Research question

How can we extract, represent and exploit

the evolution history of a database schema?

Analyzing the Evolution of Data-Intensive Software Systems

(initial) Approach

Analyzing the Evolution of Data-Intensive Software Systems

Historical schema

Analyzing the Evolution of Data-Intensive Software Systems

Historical schema
viewed within DB-MAIN

Historical schema of OSCAR (22/07/2003-27/06/2013, 670 schema versions)

Analyzing the Evolution of Data-Intensive Software Systems

Historical schema
viewed within DB-MAIN

Analyzing the Evolution of Data-Intensive Software Systems

Historical schema analysis
evolution of the # of tables

Analyzing the Evolution of Data-Intensive Software Systems

Historical schema analysis
evolution of the # of columns

Analyzing the Evolution of Data-Intensive Software Systems

Historical schema analysis
creation/deletion of tables

Analyzing the Evolution of Data-Intensive Software Systems

Historical schema analysis
creation/deletion of columns

Analyzing the Evolution of Data-Intensive Software Systems

Historical schema analysis
how many tables did each developer touch?

(incl. creation, deletion, change)

Analyzing the Evolution of Data-Intensive Software Systems

Historical schema analysis
which table did each developer touch?

Analyzing the Evolution of Data-Intensive Software Systems

Conclusions of Episod I
	
Promising achievements at this stage

•  Mining database schema history (prototype)

•  Global historical schema extraction

•  Basic 2D visualization within DB-MAIN

Expected improvements (from 09/2013)

•  Improve/extend the proof-of-concept prototype into a more
complete, robust tool suite

•  Find better, more scalable visualizations

•  Analyze a larger set of data-intensive systems

	

Analyzing the Evolution of Data-Intensive Software Systems

Episod II

DAHLIA

Analyzing the Evolution of Data-Intensive Software Systems

Episod II – DAHLIA(*)

 (*) Database ScHema EvoLutIon Analysis
… in Highly Dynamic and Heterogeneous Systems

(like OSCAR)

DAHLIA = an interactive, visual analyzer of
 database schema evolution

Analyzing the Evolution of Data-Intensive Software Systems

DAHLIA
visualizing a particular schema version in 2D

Analyzing the Evolution of Data-Intensive Software Systems

DAHLIA
visualizing an historical schema in 2D

Analyzing the Evolution of Data-Intensive Software Systems

DAHLIA
zoom on historical schema in 2D

Analyzing the Evolution of Data-Intensive Software Systems

DAHLIA
history of a particular schema object

Analyzing the Evolution of Data-Intensive Software Systems

DAHLIA
An historical schema in 3D (*)

(*)	inspired	by	CodeCity	(We<el	et	al.)	

Analyzing the Evolution of Data-Intensive Software Systems

DAHLIA
visualizing a particular schema version in 3D

Analyzing the Evolution of Data-Intensive Software Systems

DAHLIA
travelling in time (back to the future)

Analyzing the Evolution of Data-Intensive Software Systems

DAHLIA
comparing two (non-)successive schema versions

Analyzing the Evolution of Data-Intensive Software Systems

Online demo

Analyzing the Evolution of Data-Intensive Software Systems

DAHLIA
let’s go back to a previous slide…

Analyzing the Evolution of Data-Intensive Software Systems

DAHLIA
table renaming or table deletion?

deleted	on	
24/03/2011	

created	on	
24/03/2011	

Analyzing the Evolution of Data-Intensive Software Systems

DAHLIA
Identifying table/column renamings

Analyzing the Evolution of Data-Intensive Software Systems

DAHLIA
Identifying the most frequent schema changes

Analyzing the Evolution of Data-Intensive Software Systems

DAHLIA
Identifying database schema experts among the developers

Analyzing the Evolution of Data-Intensive Software Systems

DAHLIA
Identifying database schema experts among the developers

Analyzing the Evolution of Data-Intensive Software Systems

Historical schema
viewed within DB-MAIN

 Historical schema of MediaWiki – the Wikipedia database (2003-2013)

Analyzing the Evolution of Data-Intensive Software Systems

Historical schema
viewed within DB-MAIN

Historical schema of OSCAR (2003-2013)

Analyzing the Evolution of Data-Intensive Software Systems

Conclusions of Episod II
	
Analyzing database schema evolution history

•  Mining database schema history with DAHLIA

•  More advanced visualization and interaction

•  Interesting statistics for a few systems, beyond OSCAR

Expected future improvements (from 08/2014)

•  Analyzing a larger set of data-intensive systems

•  Analyzing database usage (i.e., database queries in programs)

	

Analyzing the Evolution of Data-Intensive Software Systems

Episod III

DAHLIA+

Analyzing the Evolution of Data-Intensive Software Systems

Episod III – DAHLIA+

Analyzing Database Usage
… in Highly Dynamic and Heterogeneous Java Systems

(like OSCAR)

Goals:
Extract the database queries (SQL) occuring in the source
code of the programs (Java)

Analyze those queries to derive useful information, such as
accessed tables and columns

Analyzing the Evolution of Data-Intensive Software Systems 76

Which tables are accessed in this query?

SELECT appointment.date, patient.firstname, patient.lastname
FROM appointment
JOIN patient ON appointment.patientid = patient.id
WHERE appointment.date = ‘2016-05-11’

Analyzing the Evolution of Data-Intensive Software Systems 77

Which columns are accessed in this query?

SELECT appointment.date, patient.firstname, patient.lastname
FROM appointment
JOIN patient ON appointment.patientid = patient.id
WHERE appointment.date = ‘2016-05-11’

Analyzing the Evolution of Data-Intensive Software Systems 78

... and in this one?

select billingser0_.billingservice_no as billings1_373_,
billingser0_.anaesthesia as anaesthe2_373_,
billingser0_.billingservice_date as billings3_373_, billingser0_.description
as descript4_373_, billingser0_.displaystyle as displays5_373_,
billingser0_.gstFlag as gstFlag373_, billingser0_.percentage as
percentage373_, billingser0_.region as region373_,
billingser0_.service_code as service9_373_,
billingser0_.service_compositecode as service10_373_,
billingser0_.sliFlag as sliFlag373_, billingser0_.specialty as specialty373_,
billingser0_.termination_date as termina13_373_, billingser0_.value as
value373_ from billingservice billingser0_ where
billingser0_.service_code='A001A' and
billingser0_.billingservice_date=(select
MAX(billingser1_.billingservice_date) from billingservice billingser1_
where billingser1_.billingservice_date<='2014-10-28' and
billingser1_.service_code='A001A');

Analyzing the Evolution of Data-Intensive Software Systems 79

... and in this one?

select appointmen0_.appointment_no as appointm1_89_0_, demographi1_.demographic_no as demograp1_27_1_,
appointmen0_.appointment_date as appointm2_89_0_, appointmen0_.billing as billing89_0_, appointmen0_.bookingSource as
bookingS4_89_0_, appointmen0_.createdatetime as createda5_89_0_, appointmen0_.creator as creator89_0_,
appointmen0_.creatorSecurityId as creatorS7_89_0_, appointmen0_.demographic_no as demograp8_89_0_, appointmen0_.end_time as
end9_89_0_, appointmen0_.imported_status as imported10_89_0_, appointmen0_.lastupdateuser as lastupd11_89_0_,
appointmen0_.location as location89_0_, appointmen0_.name as name89_0_, appointmen0_.notes as notes89_0_,
appointmen0_.program_id as program15_89_0_, appointmen0_.provider_no as provider16_89_0_, appointmen0_.reason as reason89_0_,
appointmen0_.reasonCode as reasonCode89_0_, appointmen0_.remarks as remarks89_0_, appointmen0_.resources as resources89_0_,
appointmen0_.start_time as start21_89_0_, appointmen0_.status as status89_0_, appointmen0_.style as style89_0_, appointmen0_.type as
type89_0_, appointmen0_.updatedatetime as updated25_89_0_, appointmen0_.urgency as urgency89_0_, demographi1_.title as title27_1_,
demographi1_.first_name as first3_27_1_, demographi1_.last_name as last4_27_1_, demographi1_.sex as sex27_1_,
demographi1_.month_of_birth as month6_27_1_, demographi1_.date_of_birth as date7_27_1_, demographi1_.year_of_birth as year8_27_1_,
demographi1_.address as address27_1_, demographi1_.city as city27_1_, demographi1_.province as province27_1_, demographi1_.postal
as postal27_1_, demographi1_.email as email27_1_, demographi1_.phone as phone27_1_, demographi1_.phone2 as phone15_27_1_,
demographi1_.myOscarUserName as myOscar16_27_1_, demographi1_.hin as hin27_1_, demographi1_.ver as ver27_1_,
demographi1_.hc_type as hc19_27_1_, demographi1_.hc_renew_date as hc20_27_1_, demographi1_.roster_status as roster21_27_1_,
demographi1_.patient_status as patient22_27_1_, demographi1_.patient_status_date as patient23_27_1_, demographi1_.date_joined as
date24_27_1_, demographi1_.chart_no as chart25_27_1_, demographi1_.provider_no as provider26_27_1_, demographi1_.end_date as
end27_27_1_, demographi1_.eff_date as eff28_27_1_, demographi1_.roster_date as roster29_27_1_, demographi1_.roster_termination_date
as roster30_27_1_, demographi1_.roster_termination_reason as roster31_27_1_, demographi1_.pcn_indicator as pcn32_27_1_,
demographi1_.family_doctor as family33_27_1_, demographi1_.alias as alias27_1_, demographi1_.previousAddress as previou35_27_1_,
demographi1_.children as children27_1_, demographi1_.sourceOfIncome as sourceO37_27_1_, demographi1_.citizenship as citizen38_27_1_,
demographi1_.sin as sin27_1_, demographi1_.anonymous as anonymous27_1_, demographi1_.spoken_lang as spoken41_27_1_,
demographi1_.official_lang as official42_27_1_, demographi1_.lastUpdateUser as lastUpd43_27_1_, demographi1_.lastUpdateDate as
lastUpd44_27_1_, demographi1_.newsletter as newsletter27_1_, demographi1_.country_of_origin as country46_27_1_, (select lst.description
from lst_gender lst where lst.code=demographi1_.sex) as formula21_1_, (select d.merged_to from demographic_merged d where d.deleted
= 0 and d.demographic_no = demographi1_.demographic_no) as formula22_1_, (select count(*) from admission a where
a.client_id=demographi1_.demographic_no and a.admission_status='current' and a.program_id in (select p.id from program p where
p.type='Bed')) as formula23_1_, (select count(*) from health_safety h where h.demographic_no=demographi1_.demographic_no) as
formula24_1_ from appointment appointmen0_, demographic demographi1_ where
appointmen0_.demographic_no=demographi1_.demographic_no and demographi1_.hin<>'' and
appointmen0_.appointment_date>='2014-10-23' and appointmen0_.appointment_date<='2014-10-23' and
(upper(demographi1_.province)='ONTARIO' or demographi1_.province='ON') group by demographi1_.demographic_no order by
demographi1_.last_name;

Analyzing the Evolution of Data-Intensive Software Systems 80

The problem of dynamically generated queries

Analyzing the Evolution of Data-Intensive Software Systems 81

SQL queries are not always written in the programs

The problem of dynamically generated queries

Analyzing the Evolution of Data-Intensive Software Systems 82

SQL queries are not always written in the programs
SQL queries are most often generated by the programs

The problem of dynamically generated queries

Analyzing the Evolution of Data-Intensive Software Systems 83

SQL queries are not always written in the programs
SQL queries are most often generated by the programs

 JDBC

The problem of dynamically generated queries

Analyzing the Evolution of Data-Intensive Software Systems 84

SQL queries are not always written in the programs
SQL queries are most often generated by the programs

 Hibernate

The problem of dynamically generated queries

Analyzing the Evolution of Data-Intensive Software Systems 85

SQL queries are not always written in the programs
SQL queries are most often generated by the programs

 JPA

The problem of dynamically generated queries

Analyzing the Evolution of Data-Intensive Software Systems

Research question

How can we extract and analyze the

(generated) database queries from the
source code of dynamic programs?

Analyzing the Evolution of Data-Intensive Software Systems

Research question

How can we extract and analyze the

(generated) SQL database queries from the
source code of dynamic Java programs?

Analyzing the Evolution of Data-Intensive Software Systems

SQL query extraction and analysis

Analyzing the Evolution of Data-Intensive Software Systems 89

SQL query extraction (JDBC)

	
	
	
	
	
3	possible	SQL	queries	at	line	11:	
	
select * from Provider

select * from Provider
order by provider_id

select * from Provider
order by provider_name
	

Analyzing the Evolution of Data-Intensive Software Systems 90

SQL query extraction (Hibernate)

SQL	query	at	line	9	(among	others):		
	

insert into CLIENT values (…)

+	class	Customer	is	mapped	with	table	CLIENT	

Analyzing the Evolution of Data-Intensive Software Systems 91

SQL query extraction (JPA)

SQL	query	at	line	4	:	
	

insert into ORDERS values (…)

+	class	Order	is	mapped	with	table	ORDERS	

Analyzing the Evolution of Data-Intensive Software Systems 92

SQL parsing

 SELECT b.title FROM Book b
 WHERE b.code=:code

SELECT

Identifier
name: b.title

Alias
name: b

Columns From

Identifier
name: Book

Expression

Binary
kind: equals

JOKERIdentifier
name: b.code

Left Right

Where

Analyzing the Evolution of Data-Intensive Software Systems 93

SQL analysis

SELECT

Identifier
name: b.title

Alias
name: b

Columns From

Identifier
name: Book

Expression

Binary
kind: equals

JOKERIdentifier
name: b.code

Left Right

Where

Accessed table: Book

Accessed columns: Book.title, Book.code

Analyzing the Evolution of Data-Intensive Software Systems

Evaluation

Metrics	about	the	case	studies	

Analyzing the Evolution of Data-Intensive Software Systems

Evaluation

Distribu1on	of	tables	accessed	per	technology	

Distribu1on	of	columns	accessed	per	technology	

Analyzing the Evolution of Data-Intensive Software Systems

Evaluation

Precision	of	the	query	extrac1on	process		
(computed	based	on	the	test	cases)	

Recall	of	the	query	extrac1on	process		
(computed	based	on	the	test	cases)	

Analyzing the Evolution of Data-Intensive Software Systems

Visualization within DAHLIA (OSCAR)

Analyzing the Evolution of Data-Intensive Software Systems

Visualization within DAHLIA (OSCAR)

Analyzing the Evolution of Data-Intensive Software Systems

Visualization within DAHLIA (OSCAR)

Analyzing the Evolution of Data-Intensive Software Systems

Visualization within DAHLIA (OSCAR)

Analyzing the Evolution of Data-Intensive Software Systems

Visualization within DAHLIA (OSCAR)

Analyzing the Evolution of Data-Intensive Software Systems

Visualization within DAHLIA (OSCAR)

Analyzing the Evolution of Data-Intensive Software Systems

Visualization within DAHLIA (OSCAR)

Analyzing the Evolution of Data-Intensive Software Systems

Online demo

Analyzing the Evolution of Data-Intensive Software Systems

Episod IV

DAHLIA++

Analyzing the Evolution of Data-Intensive Software Systems

Episod IV – DAHLIA++

Analyzing and Supporting
Database/Program Co-Evolution

 Goals:
 Identify program inconsistencies due to past database schema
 changes

 Prevent such program inconsistencies in the future, by helping
 developers propagating schema changes to programs

Analyzing the Evolution of Data-Intensive Software Systems

Episod IV
Analyzing & supporting database/program co-evolution

Analyzing the Evolution of Data-Intensive Software Systems

Episod IV
Data model of the historical dataset

Analyzing the Evolution of Data-Intensive Software Systems

Episod IV
Analyzing the evolution of database access technologies

Analyzing the Evolution of Data-Intensive Software Systems

Episod IV
Analyzing the evolution of database access technologies

Analyzing the Evolution of Data-Intensive Software Systems

Episod IV
Identifying co-evolution inconsistencies

Analyzing the Evolution of Data-Intensive Software Systems

Episod IV
Preventing co-evolution inconsistencies

Analyzing the Evolution of Data-Intensive Software Systems

Evaluation

130	selected	schema	changes	

Correctness	of	recommenda1ons	

Analyzing the Evolution of Data-Intensive Software Systems

Online demo

Analyzing the Evolution of Data-Intensive Software Systems

Epilogue

conclusions and todo list

Analyzing the Evolution of Data-Intensive Software Systems

Conclusions

Observations
 Data-intensive systems are indeed large and complex

 Continuously increasing size and complexity over time

 Several database access technologies may co-exist

 Database access can be highly dynamic

 Co-evolving database and programs is non-trivial è inconsistencies

 Automated support for developers is more than welcome !

	

Analyzing the Evolution of Data-Intensive Software Systems

Conclusions

Achievements
 Analyzing the evolution history of database schemas

 Analyzing database usage in dynamic Java programs

 Analyzing co-evolution between databases and programs

 Supporting co-evolution between databases and programs

 Current implementation for Java systems using MySQL

 Promising case studies and evaluations for large-scale systems

	

Analyzing the Evolution of Data-Intensive Software Systems

Conclusions

Future work

 Support other programming languages and database platforms

 Consider other information sources (e.g., data, developers, user interface)

 Support other database evolution scenarios (e.g., migration)

 Partly automate program adaptation under database schema change

	

Analyzing the Evolution of Data-Intensive Software Systems

References
Episod I
	

Maxime Gobert, Jerome Maes, Anthony Cleve, and Jens Weber. Understanding Schema Evolution as a Basis for
Database Reengineering. In Proceedings of the 29th IEEE International Conference on Software Maintenance (ICSM
2013). IEEE Computer Society, 2013.

Episod II

Loup Meurice and Anthony Cleve. DAHLIA – A Visual Analyzer of Database Schema Evolution. In Proceedings of
the IEEE CSMR/WCRE 2014 Software Evolution Week, pages 464–468. IEEE Computer Society, 2014.

Anthony Cleve, Maxime Gobert, Loup Meurice, Jerome Maes, and Jens Weber. Understanding Database Schema
Evolution: A Case Study. Science of Computer Programming, 97:113–121, 2015.
	

Episod III

Csaba Nagy, Loup Meurice, and Anthony Cleve. Where Was this SQL Query Executed? A Static Concept Location
Approach. In Proceedings of the 22nd IEEE International Conference on Software Analysis, Evolution, and
Reengineering (SANER 2015), pages 580–584. IEEE, 2015.

Loup Meurice, Csaba Nagy, and Anthony Cleve. Static Analysis of Dynamic Database Usage in Java Systems. In
Proceedings of the 28th International Conference on Advanced Information Systems Engineering (CAiSE 2016),
Lectures Notes on Computer Science. Springer, 2016. (to appear)
	

Episod IV
	

Loup Meurice, Csaba Nagy, and Anthony Cleve. Detecting and Preventing Program Inconsistencies Under Database
Schema Evolution. (submitted for publication)

Analyzing the Evolution of Data-Intensive Software Systems 120

Email:	anthony.cleve@unamur.be	
Twi<er:	@anthonycleve	
Skype:	anthonycleve	
	

Analyzing the Evolution of Data-Intensive Software Systems

Analyzing the Evolution of
Data-Intensive Software Systems

in support to software maintenance

Anthony Cleve
PReCISE Research Center

University of Namur, Belgium

